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Abstract An efficient parallelization scheme for classical
molecular dynamics simulations with flexible, polarizable
empirical potentials is presented. It is based on the stan-
dard Ewald summation technique to handle the long-range
electrostatic and induction interactions. The algorithm for
this parallelization scheme is designed for systems contain-
ing several thousands of polarizable sites in the simulation
box. Its performance is evaluated during molecular dynam-
ics simulations under periodic boundary conditions with unit
cell sizes ranging from 128 to 512 molecules employing two
flexible, polarizable water models [DC(F) and TTM2.1-F]
containing 1 and 3 polarizable sites, respectively. The time-
to-solution for these two polarizable models is compared with
the one for a flexible, pairwise-additive water model (TIP4F).
The benchmarks were performed on both shared and distrib-
uted memory platforms. As a result of the efficient calcula-
tion of the induced dipole moments, a superlinear scaling as
a function of the number of the processors is observed. To
the best of our knowledge, this is the first reported results
of parallel scaling and performance for simulations of liquid
water with a polarizable potential under periodic boundary
conditions.
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1 Introduction

Advances in computer technology over the last decade made
it possible to render a molecular level picture into the study of
systems of chemical and biological interest using molecular
dynamics (MD) and monte carlo (MC) techniques. Current
Massively Parallel Processing (MPP) architectures and com-
puter clusters have enabled new progress in these areas.

The efficient parallelization of simulation algorithms can
provide a powerful tool for assessing the accuracy of various
simulation techniques. This is because statistical uncertain-
ties during a simulation decrease as both the size of the system
and the simulation length increase, while several approxima-
tions that are necessary due to the lack of computer power
are avoided. Once these issues are sorted out it becomes pos-
sible to evaluate the accuracy of reduced representations of
the intra- and intermolecular interactions, such as classical
interaction potentials, which are based on different physics.

Several toolkits have been developed over the last few
years in order to leverage the power of parallel computer
systems and provide the programmer with high level tools
for the fast development of parallel codes. For instance, the
message passing interface (MPI) [1] and global arrays (GA)
toolkits [2-4] have been extensively used for the development
of several MD and first principles (ab-initio) suites of codes.

Molecular dynamics simulations can be computationally
demanding, depending on the size of the system (number of
atoms) and/or the length of simulation (number of time steps).
Biological molecules usually consist of a large number of
atoms, while for a realistic description of their dynamics an
aqueous environment is required. The size of the system thus
typically consists of hundreds of thousands of atoms. For
biological systems of that size, parallel implementations of
polarizable force fields already exist in several MD packages,
such as CHARMM [5] and AMBER [6].

On the other hand, some macroscopic properties of several
systems of interest to the chemical physics community can
be successfully simulated using supercells of only a few hun-
dred atoms or molecules or even less. For this size regime, as
the computer memory requirements are significantly smaller,
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it is possible to design alternative parallelization schemes
and therefore decrease even more the time-to-solution. For
example, it has been found that unit cells of just 32 [7] or
54 [7,8] molecules can produce accurate estimates for prop-
erties such as the enthalpy and the radial distribution function
of liquid water under periodic boundary conditions (PBC).
Typical simulations of liquid water under PBC are based upon
simulation cells of 200-256 water molecules while for some
properties no more than 512 molecules are required. For these
cases, however, the length of the simulation is much more cru-
cial than the system size. For example, flexible water empiri-
cal potential models, which allow for the explicit description
of the intramolecular stretching and bending motions, require
typical time steps of §t = 0.2 fs or less. Furthermore, prop-
erties like the dielectric constant require at least 1 — 2ns of
simulation time or about 107 time steps. These conditions can
currently be met using simple pairwise—additive interaction
potentials, however for the more computationally demand-
ing many-body polarizable models this task can amount to
more than several months of real time on a single processor.
The time-to-solution is clearly an issue for system sizes of
a few thousand atoms such as the ones considered in this
study.

Water is by far the most studied liquid due to its impor-
tance in several different fields. The first computer simula-
tions of liquid water using simple pairwise-additive empirical
potentials were performed about three decades ago [9,10].
The electrostatic interactions between water molecules are
usually modeled by assigning fractional charges to the oxy-
gen and hydrogen atoms, while the electronic repulsion and
the dispersion interactions are typically described by pair—
additive (usually Lennard—Jones) interactions between the
Oxygen atoms.

This work is focused on the efficient parallelization of
many-body, flexible, polarizable interaction potentials for
water for use in MD simulations of the liquid properties un-
der PBC. Our parallelization strategy works best with distrib-
uted memory systems and also shared non-uniform memory
(NUMA) systems. To the best of our knowledge there is no
prior published results regarding the scaling of algorithms
used for the parallelization of polarizable potentials for water
under PBC. The material is organized as follows: In Sect. 2
expressions of the energy and forces are presented for a peri-
odic system with charges and polarizable atoms in which
the Ewald summation technique is employed. In Sect. 3 we
discuss several basic schemes, which are appropriate for the
parallelization of the simpler pairwise—additive potentials.
Based on the ideas presented in that section, we furthermore
present in Sect. 4 an efficient scheme for the parallelization
of a polarizable model under PBC. In Sect. 5 we describe
three different water models of increasing complexity that
were used as test cases in order to evaluate the efficiency of
the proposed algorithm, as well as the computer platforms
that the benchmarks were performed and the results of the
benchmark calculations. These results are discussed in Sect.
6 where conclusions and guidelines for future development
are also presented.

2 Ewald summation for charges and polarizable atomic
dipoles

The Ewald summation has been used to treat the long-range
interactions between charges and induced dipoles. Details
of the Ewald method have been presented previously by
Nymand and Linse [11]. Here we outline the basic equa-
tions in a form that is suitable to discuss the basic concepts
of our parallel scheme in the subsequent sections.

The total energy of a system that contains charges and
dipoles is given by the sum of the electrostatic and induction
energies:

U = Uelec + Uing
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In this equation ¢; is the charge and u; o is the (= x, y, 2)
component of the induced dipole moment of atom i (for sim-
plicity we will consider that the system does not contain per-
manent dipoles). For the Greek letter indices the Einstein
summation convention is followed. ¢7** and E;'% are the (sta-
tic) electrostatic potential and the electrostatlc ﬁeld on atom {
arising only from the charges of the system. The total electro-
static potential, ¢;, and field, E; 4, also include an induction
term. The expression for the total electrostatic potential and
field is given by:
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For an atom with polarizability a; the induced dipole mo-
ment, [4; o, 1S given by:

i = 0 EJ%S + o EIS. “4)
The tensors in Egs. (2) and (3) are: f} i = erfe(krij)/rij,

T8 = VoTyj, T = Vo VT and TV = Vo Vv, T,
where Kk is the Ewald parameter, r;; = r; —I; wherer; is the
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position vector of atom i, and erfc(x) is the complementary
error function (erfc(x) = 1 —erf(x), where erf(x) is the error
function). It should be mentioned, however, that the f} j inthe
previous form is appropriate only for atomic systems or inter-
molecular interactions. For the case of a molecule in which no
electrostatic interaction between two atoms within the mol-
ecule is considered, the form T;; = erf(kr;;)/r;; should be
used instead.

Both the static and induced terms for ¢; and E; , of Egs.
(2) and (3) include a sum in the reciprocal space which ac-
counts for the long-range corrections. For a primary box of
lengths Ly, Ly, and L, and volume V/, the k-vectors are given
by:
k = 27 (”—x”—’”—z) (5)

L, L, L,
Theny, ny, n, are integers and their maximum values are

determined by the size of the box and the required accuracy.
In Egs. (2) and (3) we have defined Ay as:

Ay = kfzefk2/4;<2’ (6)

while the complex Q7 and Q" (Q? and Q" are their corre-
sponding complex conjugates) are given by:

Q1 =" g,
J

OF = i(p; ke, (7)
J
Finally the force on atom i is given by:
i = qiLia + Wi,pLiLas
fi Eiy+ E (8)

where, E; op is the electrostatic field gradient:
Eiap = Efas + El'us
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3 Parallelization of a pairwise—additive potential

There exist two main strategies for the parallelization of a
pairwise—additive potential, namely atom-decomposition and
force-decomposition. Several algorithms belonging to these
two classes have been proposed and implemented in MD
packages (for more details see Refs. [12-15] and the refer-
ences therein). As it will become evident in the next section,

it is important to determine which of those is appropriate to
be used in the case of a polarizable potential. For this reason,
in this section we shortly describe possible parallelization
schemes for a pairwise—additive potential.

We first consider the simpler case of a periodic system
with N atoms that interact via a short-range pairwise-additive
potential. The total energy of the system and the force on
atom i are given by:

E = %ZZGU ZZZEU"
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where €;; = €(r;;) is the pair interaction energy between the
atoms i and j, while f;; = f(r;;) is the corresponding force.
Once the force on each atom i is determined at time ¢, its
position r; and velocity v; can be obtained for time ¢ + §¢ by
integrating Newton’s equations:

) dV,‘

(10)

(11)

We will assume that the interaction between two atoms
is zero if the distance between them is larger than a certain
cutoff distance, R., which does not exceed half the size of
the box, L (R; < L/2).

Due to the fact that the time step &¢ is small, a specific
atom usually interacts with the same set of atoms for several
time steps. We can take advantage of this fact for the fast
evaluation of the energy and forces using the neighbour list
method proposed by Verlet [16]. In this method, for each atom
a list containing labels of all atoms within a sphere of radius
R centered on that atom is created. The value of Rg should
be chosen to be larger than R.. At each time step, instead of
examining if all atoms of the system are inside the sphere
of radius R, only the atoms within the sphere of radius Rq
are examined. It is clear that depending on the conditions of
the simulation (i.e. density and temperature) and the differ-
ence (Rs — R.), after a certain number of time steps the list
of neighbours for each atom should be updated. Details of
the implementation of the neighbour list algorithm can been
found in Ref. [17].

Clearly the most straightforward parallel implementation
of the system (scheme (a) in Fig. 1) relies on assigning a
group of N/P atoms to each one of the available P proces-
sors. Initially, each processor has to calculate the Verlet list
for these atoms and compute the forces in order to update the
positions r; by integrating Newton’s equations. Communi-
cation among all processors is required at this point in order
to exchange the updated atom positions. The disadvantage
of this method is that it does not take into account Newton’s
third law, namely f;; = —f};. As a result, the total number
of computations is doubled. A second disadvantage is that
this technique does not provide an opportunity to balance
the amount of work done by each processor (load balanc-
ing). Each processor will have equal amount of work only
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Fig. 1 Illustrative examples of the parallelization schemes (a), (b) and
(c) described in the text. We have considered P = 4 processors labeled
from O to 3. The total N x N pair interactions are divided in smaller
blocks. Every processor performs calculations only in the shaded area
of each block

if the number of the total interactions for the N/P atoms is
the same. However, depending on the physical system that is
under study and the conditions of the simulation, it is pos-
sible that the number of neighbours will differ significantly
for each atom. As a result, the work load will be different
for each processor. Lack of balanced per-processor load can
have a significant and adverse impact on the overall simula-
tion time [18].

An alternative parallelization scheme (Fig. 1b) that over-
comes the difficulties described above requires a small
amount of additional communication. In this scheme the to-
tal workload is divided in (N/g) x (N/g) indexed blocks.
The efficiency of the calculation is related to the value of
the parameter ¢, as will become clear in the subsequent dis-
cussion. An example is shown in Fig. 1b, for ¢ = 6: in this
case the total array is divided into 36 blocks, indexed from
0 to 35. In order to determine the index of the block a pro-
cessor is to work on next, a globally shared counter variable
is maintained [19]. Its current value represents the index of
the next block that needs to be worked on. When a processor
is finished with its current block, it increments the counter
again and obtains the index of the next block to work on. This
process is repeated until the counter reaches a value greater
than the number of blocks, thus indicating that the computa-
tions on all blocks have been completed. Since the counter
is globally shared and multiple processors can attempt to ac-
cess it concurrently, the updates to the counter value must
be “atomic” (i.e., executed in a serial manner) in order to

ensure consistency of the counter values. In our implemen-
tation the “atomic” update is supported through the Global
Arrays read_and_increment operation. As it is also shown in
Fig. 1b the blocks as well as the number of blocks that each
processor is going to work on are not predetermined. This
depends on the number of interactions that needs to be com-
puted in each block. A processor working on a block with
more interactions than the other blocks may end up work-
ing with less blocks than the other processors. This is how
a balance in the load for each processor is achieved. In the
previous example the processors 0, 1, 2, 3 workedon 9, §, 11
and 8 blocks, respectively. However, it is important to care-
fully choose the number of blocks that the whole array will
be divided to as this determines the degree of load balancing
that can be achieved. A small number of blocks will not guar-
antee load-balancing, while a large number of blocks may be
better for load balance but may also increase the amount of
communication slowing down the entire calculation. Using
this method it is easy to take advantage of Newton’s third law,
reducing the amount of computations by half with respect to
the previous method. A simple way to achieve this is shown
in Fig. 1b, in which each processor performs computations
only for the shaded areas. In this way for a pair of atoms i and
J only the force f;; is calculated (not f;), while the total force
on these atoms will be updated according to f; = f; +f;; and
f; =f; —f;;. After the end of all computations each proces-
sor contains only a part of the force for every atom. A global
summation of the forces among the processors is required at
this point in order to be able to update the positions of the
atoms according the Eq. (11).

Finally a third scheme is illustrated in Fig. lc. In this
approach the total workload is divided in (N/P) x (N/P)
blocks. All processors are working only on the whole block
B, pif b > a,whileif b = a the processor calculates only the
upper diagonal part of interactions. In contrast to the previ-
ous scheme, each processor works on predetermined blocks.
For the first row of blocks the processors 0 through P — 1
are assigned, while for the second row a cyclic left shift is
performed with respect to the first row and so on. As it can be
seen in the example of Fig. 1c, we can still take advantage of
Newton’s third law by calculating only specific interactions.
According to the previous discussion the workload for each
processor may be different. However, as we will see in the
next Section, it is possible to overcome this problem.

4 Parallelization of a many-body polarizable potential

The procedure for the calculation of the energy and forces
of a periodic system containing charges and dipoles can be
divided in the following three steps:

1. Calculation of the ¢, E}'} and E}'f's from the first part
of the Egs. (2), (3) and (9) and construction of the dipole
moment tensor array f"l‘;’g ,

2. Calculation of the total electric field E; , by solving the
linear system of Eq. (3) and the induced dipole moment
Mi.a given by Eq. (4),
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3. Calculation of the induction ¢! and E l“‘gﬁ terms [second
part of the Egs. (2), (9)] and subsequently the total energy
U, forces fi o, [Egs. (1), (8)] and virial.

We observe that the steps (1) and (3) are equivalent, in the
sense that in the real space only interactions between pairs
of atoms are considered, i.e. in step (1) the pairwise—additive
charge—charge interactions are calculated, while in step (3)
the pairwise—additive charge—dipole and dipole—dipole inter-
actions are computed. For these calculations in real space, one
of the parallel algorithms described in the previous section
may be used. However, it is step (2) that is the most time
consuming part of the whole procedure as the induced dipole
moment (; , on each atom i is a function of all atoms of
the system (many-body potential). In order to compute the
Wi o, for asystem that contains Ny polarizable atoms, a linear
system of (D x D) equations should be solved (D = 3Ny
where the factor 3 comes from the three components x, y, z
of each dipole). Equation (3) may be written as AE = E%,
where E®* is a vector of size D that contains all E;" ele-
ments, and has been already calculated in step (1). By takmg
into account that the array A is symmetric, one may use the
Cholesky method (see for example Reference [20]) in order
to solve the system of equations. An alternative approach is
to use an iterative procedure. Assuming that a good initial
estimate, E© | of the total electric field E can be made, a
new electric field, E(V, closer to E can been computed by
substituting E© in the right-hand side of Eq. (3). This pro-
cedure should be repeated k times, until the desired accuracy
of EW is reached. As the electric field E*® arising from the
charges is usually much more significant than the field arising
from the induced dipoles E™, one can set E©Y = E*™_ How-
ever, even better choices of E(? have been proposed and are
discussed in the following sections. The Cholesky method
requires D3 /2 operations while the iterative procedure k D?.
A detailed discussion of the two methods can be found in Ref.
[21]. In our implementation, as the number of iterations k is
much smaller than D /2, we have used the iterative procedure.

By examining the right-hand side of Eq. (3) it can be real-
ized that the matrix elements of dipole tensor matrix T *F can
be calculated and stored in the memory before step (2) in
this way avoiding the re-calculation of the same matrix ele-
ments during the iterative procedure. For this reason in our
implementation we have included this calculation in step (1).
The matrix—vector multiplication of the Tl‘;ﬁ and p; g will
also be performed much faster as each processor will be able
to use efficiently its cache memory. However, for the paral-
lel execution of the matrix—vector multiplication, attention
should be paid to the following points: (i) The matrix ele-
ments of the Tl‘;ﬁ tensor should be distributed equally among
the processors for load balance, (ii) any transfer of the matrix
elements of T.O-lﬁ between processors should be avoided and

(iii) the symmetry of the array T B _ T“ﬁ should be taken
into account.

Examining the three parallelization schemes discussed in
the previous section, it can be seen that the first one (Fig. 1a),

satisfies the first two conditions, but the matrix elements Tl';ﬁ

and Tﬁﬂ should be computed by different processors. As a
result, the total number of computations will be doubled.
Some attempts have been made so that processors exchange
instead of recompute matrix elements. However we found
that the communication cost is high and increases signifi-
cantly with the number of processors. The second parallel-
ization scheme (Fig. 1b) does not satisty the first and third
conditions. As we show in the previous section, each proces-
sor in general will contain a different number of data blocks.

The third parallelization scheme appears to have some
interesting features. According to the example in Fig. lc,
only the matrix elements T p , withi > j will be computed.
Also every processor computes the same amount of matrix
elements (2 x D/4 x D/4 in the example). Hence this algo-
rithm meets all three requirements set above. After the con-

struction of the matrix Tl‘jﬂ in this way, each processor has
to perform four matrix-vector multiplications of size (D /4 x
D/4) x (D/4). The resulting (D/4) vector for each multi-
plication is stored in the proper position of a vector of size
D. At the end of the computations from all processors, the
global sum of vectors will yield the final result. This proce-
dure is illustrated in Fig. 2 and it has been implemented in a
computer code. This algorithm appears to be superior to the
previous two and it has been used in the present study.

After the end of the matrix—vector multiplication and the
calculation of the remaining terms of Eq. 3 in the real and
reciprocal space, a new electric field E; , will be obtained
that will be used in the next iteration, until convergence of
the induced dipole moments is reached.

So far we have discussed only the parallel implementa-
tion of the real terms appearing in the equations of Sect. 2. We
can see, however, that the static and induced terms for both
¢; and E; , contain terms in reciprocal space that should be
evaluated in each of the three steps that are required for calcu-
lation of the energy and forces. These calculations are easily
parallelized as they involve a single summation over the k-
vectors. As the number of k-vectors, ng, is usually between
a few hundred and a few thousand, this is significantly larger
than the number of processors P. The sum over the k-vectors
can be divided into P blocks and each processor calculates
only a partial sum of the ny /P terms.

In a more efficient approach, the total number of k-vectors
can be divided in By blocks, where By > P. A global-shared
counter is used by all processors to pick the block it would be
working on in the same fashion it was described in the previ-
ous section. By doing this, the amount of work correspond-
ing to each processor is not predetermined. The advantage of
this method is that any load imbalance induced in the stat-
ically determined calculations performed in the real space,
is absorbed by the calculations in the reciprocal space. For
example, the processor to finish the calculations in the real
space first, will calculate a larger part of the sum in the recip-
rocal space as opposed to the processor that finished the real
space calculations last. This is shown schematically in Fig. 3.
It should be noted that for an efficient implementation of the
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+ | reciprocal space
w3 | | )
|
_ |Anr B |
Proc=1 Az By Fig. 3 Load balance for the possible imbalance introduced during the
Awu B calculations in the real space is achieved during the calculations in the
34 By : . :
reciprocal space. The time required from each processor to complete
the calculations in the real space is different. However, by properly
+ adjusting the amount of work in the reciprocal space the total time
required from all processor at the end of both these calculations is
A3 By similar
Apn B
Proc=2 = |A;; B; employed the pairwise—additive flexible model TIP4F [25]
AL B as a point of reference. All these empirical potentials are 4-
4 41 site models, with a fictitious massless site (M-site). For the
N DC and TTM2.1-F models the M-site is located in the bisec-
tor of the HOH angle. The position vector of the M-site is
A4 By determined via the holonomic constraint of Reimers et al.
[26]
_ |An B v
Proc=3 - A, Bs ry = ro+ E(rHIO +TrH,0). (12)
Ajg By The TTM2.1-F model uses the Partridge and Schwenke

Fig. 2 An example of a matrix—vector multiplication using 4 proces-
sors. Each processor contains the data blocks shown in Fig. 1c. The
symbol (T) denotes the multiplication of the transpose of a matrix with
a vector. Note that indices 7 and j of matrix A (A;;) are not referring to
matrix elements, but to the divided blocks

sum in the reciprocal space, trigonometric formulas could
be used for the evaluation of e’*i terms. A fortran code is
given in Appendix 1 as an example. It should also be men-
tioned that there are several methods, such as the particle
mesh Ewald method [22], which can be used for the calcula-
tions in the reciprocal space in a more efficient way. Future
implementation of these methods does not require any fur-
ther modifications of the presently proposed parallelization
scheme.

5 Implementation and performance evaluation
5.1 Empirical potentials

In order to test the efficiency of our parallel algorithm we
have used the Dang—Chang (DC) [23], and the version 2.1 of
the Thole-type, flexible, (TTM2.1-F) [24] polarizable water
models. The first has one polarizable site whereas the sec-
ond has three polarizable sites per molecule. We have also

[27] potential energy surface for the description of the mono-
mer. For the TIP4F potential the interactions between the sites
(three atoms, M-site) within each monomer are described by
harmonic oscillators. On the other hand, the DC treats the
water molecule as a rigid body. However, as the goal of this
work is to directly compare the efficiency of our algorithm
during MD simulations for different systems at the same con-
ditions, we have also treated DC as a flexible model [hereafter
denoted as DC(F)], in which the intramolecular OH stretches
and HOH bend are described by harmonic oscillators. Details
related to the analytical functions that each model uses for
the description of the intramolecular and van der Waals (vdw)
interactions are not given here as from the technical point of
view their implementation is similar.

The charge and polarizable sites for the three models are
illustrated in Fig. 4, while the corresponding parameters are
given in Table 1. Due to the different treatment of the electro-
static interactions in the TTM2.1-F model, which uses smear-
ing instead of point charges, additional details are presented
in Appendix 2.

In our tests we have considered three system sizes con-
taining 128, 256 and 512 water molecules in a cubic simula-
tion box. In all tests the density of the system was 0.997g/cm?>.
Spherical cutoffs of R. = 9.0 and 10.0 A were chosen for the
boxes containing 256 and 512 molecules respectively, while
the box with 128 molecules included interactions between
all molecules. The k-vectors in the reciprocal space were
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Fig. 4 The three interaction potentials used in this study. The charge
and polarizable sites are shown

Table 1 Charges (¢) and polarizabilities (a) for the water models

TIP4F DC(F) TTM2.1-F
q0 0.0 0.0 0.0
qn 0.511 0.519 0.578
am ~1.022 —1.038 ~1.156
ao 0.0 0.0 0.837
an 0.0 0.0 0.496
am 0.0 1.444 0.0

Note that the values of the charges of the TTM2.1-F potential depend
on the water monomer configuration (see Appendix 2 for details). In
the table they correspond to the minimum energy conformation

2,442, 3,215, and 4,608 for the systems with 128, 256 and
512 molecules, respectively. Using the Nosé thermostat [28],
a constant volume and temperature (NVT) MD simulation of
1,000 steps at T = 298 K was performed for all systems with
a time-step of 0.2 fs. The velocity Verlet [29] algorithm was
employed for the integration of the trajectories. For the polar-
izable models the required accuracy for the induced dipole
moments was 10~% Debye. We found that at these simulation
conditions, 15-20 iterations are required for the convergence
of the induced dipoles when using as initial guess of the total
electric field E© = E*“. A better estimation of E© has
been proposed by Ahlstrom et al. [30] using a third-order
prediction scheme during the MD trajectory. At time ¢, the
E© (1) is given by

4
EQ@) = Z A E( — ndt),

n=1

13)

where 8¢ is the time step and A = 4, A, = —6, A3 = 4,
A4 = —1. It was found that in this case the required num-
ber of iterations to achieve the same accuracy is reduced to
3—4. This method was used in all benchmarks. The timings
reported in this paper also include the calculation of the virial

[11].

5.2 Computer platforms and tools

The benchmarks were performed in two different computer
platforms at Pacific Northwest National Laboratory (PNNL).
The first one is a HP cluster in which each cluster node has
dual TA64 Madison 1.5GHz CPUs on a HP ZX1 Chipset
(from now on denoted as HP/IA64). Each Madison proces-
sor has an individual level 1 (L1) and level 2 (L.2) caches and

a 6 MB, on die, level 3 (L3) cache. The nodes in the clus-
ter are interconnected by the Quadrics QsNetlI network. The
interconnect connects to a system via a 133 MHz PCI-X bus.
Each node has at least 6 GB of memory. The second platform
(denoted as IBM/PS) is an IBM eserver p5-595. It is a 64-
way SMP with 32 1.65 GHz 64-bit PowerS5 processors. Each
POWERS chip has 2 cores and each of these processing cores
has an individual L1 cache, shared L2 cache and a shared L3
cache of 36 MB.

For the implementation of the algorithm the global array
(GA) toolkit was used. The GA toolkit provides an efficient
and portable shared memory programming interface for dis-
tributed memory computers. Each process in a MIMD par-
allel program can asynchronously access logical blocks of
physically distributed dense multi-dimensional arrays, with-
out the need for explicit cooperation by other processes. GA
provides interfaces that allow distribution of data while main-
taining the type of global index space and programming
syntax similar to what is available when programming on
a single processor. It also provides interfaces to operate on
data atomically, which is needed for the “atomic” counter up-
date mentioned in Section III. GA also provides interfaces for
creating and destroying multi-dimensional arrays and several
one-sided and collective operations on arrays and array sec-
tions. Compatibility of GA with MPI enables the program-
mer to take advantage of the existing MPI software/libraries
when available and appropriate. The code was developed
in fortran-90 using the Intel efc and the IBM x1f com-
pilers for the HP/IA64 and IBM/P5 platforms respectively.
Only the intrinsic fortran-90 mathematical functions were
used.

5.3 Performance and scaling

The wall times of the benchmarks on the HP/IA64 and
IBM/PS5 platforms are shown in Tables 2, 3 and 4 for the
three empirical potentials with three different system sizes.

Table 2 Wall-clock time (seconds) required for 1, 000 MD steps on
the HP/IA64 and IBM/PS5 system platforms as a function of the number
of processors for a unit cell containing 128 water molecules

Model Platform Ip 2p 4p  8p 16p 32p
TIP4F HP/1A64 303 156 82 48 28 27
IBM/P5 280 143 76 42 28 59

DC(F) HP/1A64 1037 50.0 26.1 146 84 72
358 154 80 46 28 22

IBM/P5 96.1 485 253 134 79 111

251 125 65 33 1.8 11

TTM2.1-F HP/IA64 310.0 133.7 550 29.0 162 12.6
152.6 548 161 87 48 32

IBM/P5 2246 1140 583 30.0 16.5 165

541 280 141 72 37 37

The three blocks of the table refer to the TIP4F, DC(F), and TTM2.1-F
potentials, respectively. The required time for the computation of the
induced dipole moments with the iterative procedure is shown with
italics
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Table 3 Same as Table 2 for a unit cell of 256 water molecules

Model Platform 1p 2p 4p 8p 16p 32p
TIP4F HP/TA64 857 43.6 224 119 68 45
IBM/P5 78.8 40.0 203 107 62 7.7
DC(F) HP/TA64 2652 12677 612 320 17.7 11.1
73.3 296 11.8 6.3 37 25
IBM/P5 2399 121.1 60.7 31.3 17.0 14.2
40.5 20.8 10.1 52 2.7 L5
TTM2.1-F HP/IA64 839.6 426.1 1889 77.8 39.0 26.6
377.1 184.3 679 181 87 6.8
IBM/P5 605.3 2934 148.6 74.7 393 26.1
128.8 56.1 294 142 76 44
HP/1A64
40
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L - ) i
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Fig. 5 Performance of the parallel code on the HP/IA64 platform as a
function of the number of processors for the three different potentials
and the three different simulation boxes. The solid lines corresponds to
the ideal (linear) scaling, the dotted lines to the TIPAF, the dot—dashed
line to DC(F), and the dashed line to the TTM2.1-F potential

The speed-up with respect to serial wall time ¢, is defined as

1(1‘1)
s=—(—1,
P tp

where P is the number of processors and #, is the correspond-
ing execution time in parallel. For the HP/IA64 platform the
relative timings with respect to serial execution (#{/tp) are
shown in Fig. 5 and for the IBM/P5 on Fig. 6. It can be seen
that in several cases the polarizable models show a super-lin-
ear speed-up.

By comparing the results of Tables 2, 3 and 4 we see that
for the pairwise—additive potential, the times do not differ
significantly for the HP/IA64 and IBM/P5 platforms. How-
ever, for the polarizable models the results are quite different.
Usually for a small number of processors the IBM/P5 is much
faster than the HP/IA64, while for a larger number of proces-

(14)
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Fig. 7 Time to solution for 1, 000 MD steps in a system with 512 water
molecules on the HP/IA64 and IBM/P5 platforms. The times are shown
for the three empirical potentials on 1-32 processors (Table 4)

sors in some cases the HP/IA64 outperforms. For example, in
the case of a cell with 512 molecules and the DC(F) empir-
ical potential on 1 processor the IBM/PS is faster than the
HP/TIA64 (790 sec and 1113 sec respectively), while for 32
processors the HP/IA64 is faster than the IBM/PS (30.8 sec
and 43.3 sec respectively). The total wall times for the sim-
ulation cell of 512 molecules are shown in Fig. 7.
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By examining the time needed for the calculation of the
induced dipoles (shown in italics in the tables) we see that the
IBM/PS is faster. However, by taking the difference between
total wall time and the time spent in the computation of the
induced dipole moments, we see that it is quite similar for the
two platforms. This can be also seen for the pairwise additive
TIP4F potential of Fig. 7. Hence, it is only the performance
of the matrix—vector multiplication that differs significantly
between the two platforms. This is a result of the size of the
cache memory of each processor, particularly the L3 cache
as it will be discussed in more detail in the next section.

By comparing the wall times we can see that they are sim-
ilar for the TIP4F on 1 processor, the DC(F) (one polarizable
site) on 4 processors and the TTM2.1-F (three polarizable
sites) on 8 processors. As a conclusion, 4 and 8 are roughly the
number of processors required for the DC(F) and TTM2.1-F
polarizable models in order to be able to perform MD sim-
ulations with speeds comparable to a serial execution of the
pairwise—additive (TTP4F) model.

6 Discussion and conclusions

The algorithm presented in this work was designed in order
to minimize the communication between processors as much
as possible, take advantage of the symmetries of the prob-
lem by avoiding the recalculation of pair energies, forces or
matrix elements and balancing the workload of every proces-
sor by properly combining the computations in the real and
the reciprocal space in a single step. The results presented
in the previous section show that by taking advantage of the
modern processor architectures it is possible to design algo-
rithms for the efficient parallelization of polarizable empiri-
cal potentials that show super-linear scaling with the number
of processors, as shown in Fig. 5. This result is an interest-
ing feature of our algorithm and it will be further analyzed
in terms of the architecture of the two computer platforms
which were used in this study.

The size of the L3 cache for Power5 is about six times
larger than that for the IA64. As the number of processors
increases, the size of data being operated on becomes smaller.
If the size of the data being used fits in the cache, the impact
of the cache and its size will not affect the execution time of
the induced dipole moments (shown in italics in the Tables 2,
3, 4). Hence as the number of processors increases and the
problem size becomes smaller, both platforms produce much
closer and relatively linear execution times. Even for 1 pro-
cessor runs on the Power5, the data being operated on fits bet-
ter in its large (36 MB) L3 cache. Hence the speed up seen on
this platform for TIP4F, DC(F) and TTM2.1-F potentials with
128, 256 and 512 water molecules is linear. This is however
not the case for the IA64 with its smaller (6 MB) L.3 cache. In
particular, it can be seen from the execution time of induced
dipole moments for the 512 molecules supercell case (shown
in italics in Table 4) that for the DC(F) and TTM2.1-F the
wall-clock time does not scale linearly for smaller processor
count (visible for up to 4 processors). This is the effect of

Table 4 Same as Table 2 for a unit cell of 512 water molecules

Model Platform 1p 2p 4p 8p l6p 32p
TIP4F HP/1A64 2464 1259 642 334 18.1 10.7
IBM/P5S  227.0 1145 57.8 302 16.1 12.6

DC(F) HP/IA64 1112.8 4925 222.6 102.1 542 30.8
552.9 2057 787 288 156 9.2

IBM/P5 7905 3924 201.0 101.5 52.6 43.3

211.7 1029 552 274 138 134

TTM2.1-F HP/IA64 4339.0 1816.5 8829 367.4 146.8 76.6
2944.0 1085.3 514.3 181.2 50.5 26.3

IBM/P5 2009.5 990.3 488.6 2349 120.8 70.2

650.0 314.0 152.3 67.2 34.6 20.2

L3 cache misses and the fact that data being operated on was
much larger for the cache and resulted in several L3 cache
misses. To validate our assumption we profiled the number
of L3 cache misses on this system for the 512 water molecule
supercell case with the TTM2.1-F potential. Figure 8 shows
the number of L3 cache misses when using the TTM2.1-F
potential for a supercell of 512 water molecules on 1, 2 and 4
processors. It can be seen that the number of L3 cache misses
when running on 2 processors versus 1 processor goes down
by a factor of 2 on Power5 architecture while on the IA64
it drops by a factor of 15, explaining the super-linear behav-
ior for this case. Similarly, when executing on 4 processors
versus 2 processors, the number of L3 cache misses drops
by factors of 2 and 4 for the Power5 and [A64 architectures,
respectively.

It should be emphasized that all the benchmarks were
performed with flexible water models that require a small
integration time step, 8¢, during a MD simulation. In the case
of rigid models it is possible to increase the time step by about
one order of magnitude to 1 — 2 fs, in this way decreasing the
number of steps required for a simulation of a specific length.
However, in this case the number of iterations required for
the convergence of the induced dipoles will increase signifi-
cantly. If we treat the water monomers of the previous polariz-
able models as rigid bodies, the number of iterations required
increased to 10-12 instead of 3—4 with flexible water mono-
mers and 0.2 fs time step. In this case the efficiency of the
proposed algorithm will be much more advantageous when
it is executed across several processors.

The efficiency of the algorithm proposed here is based on
the fact that the dipole tensor matrix elements are stored in
an array and are not recomputed during the iterative proce-
dure required for the calculation of the induced dipoles. In
this way the total time-to-solution is reduced. Additional gain
comes from the efficiency that modern processors can exe-
cute the matrix-vector multiplication, which in several cases
results to a superlinear speed-up with increasing number of
processors. However, this scheme has intrinsic limitations
when the size of the physical system becomes significantly
larger than the typical sizes used in this study: (i) the memory
requirements increase as ~N? limiting in this way the maxi-
mum size of the system. (ii) the dipole-tensor array becomes
sparse. The amount of the non-zero matrix elements depends
on the dimension of the box L, as well as the radius of the
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Fig. 8 Number of the L3 cache misses on the two computer platforms
for 1, 2 and 4 processors during the calculation of the induced dipoles
for a simulation box of 512 water molecules and the TTM2.1-F potential

sphere R, that the interactions in the real space are considered
for every atom. The ratio of the number of interactions con-
sidered over the total number of interactions for all atoms in
the box is given by: a = (471/3)(RC/L)3 (where fora =1 all
interactions are considered). For a system for which R, = L2
about half of the matrix elements are non-zero (@ = 0.52).
When the Ewald summation technique is employed, typical
values used for R, are between 9.0 and 12.0A. If L2 is sig-
nificantly larger than R. then most of the matrix elements
of the dipole tensor will be zero. In this case, it is possible
that the multiplication of the non-zero matrix elements only
(instead of the total matrix) with the dipole moment vector
will become a more efficient approach.

Based on the guidelines of the current implementation
it would possible for these system sizes to develop parallel
codes that require even less time-to-solution. The improve-
ments proposed here are the particle-mess Ewald method
(pme) [22] for the treatment of the long-range corrections
and the link-cell method [31] in combination with the Ver-
let list. These improvements however are expected to become
important for systems of much larger sizes than the ones con-
sidered in this study. Despite the limitations of the algorithm
discussed earlier for larger systems, we believe that it has
a wide range of applicability for many physical systems of
small to medium size (i.e. up to a few thousand polarizable
sites).
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Appendix 1

Here we outline the approach for performing parallel calcu-
lations in the reciprocal space using fortran code. The symbol
“" denotes a comment. We note that e’ = cos(x)+i sin(x).

In the first step, the number of k-vectors (nvec) and their
indices will be determined and stored in kv. Usually they do
not change during a MD simulation and the following sub-
routine is executed only at the beginning of the code from all
processors.

nvec=0
do nx=0, max_nx
do ny=-max_ny, max_ny
NXy=nx**2 + ny**2
do nz=-max_nz, max_nz
if (nxy + nz**2 < max_n2)
nvec=nvec+1
kv(1l:3, nvec) =
endif
enddo !
enddo !
enddo !

(/nx, ny, nz/)

nz

ny
nx

At this point each processor pre-calculates and stores
some trigonometric terms. In this way it can take advantage
of trigonometric formulas for the fast calculation of ¢’*'T dur-
ing the main calculation. The following code calculates the
cos(k,x) and sin(k,x) (denoted as cx and sx in the code)
for every atom i. A similar code should be used for the cal-
culation of cy, sy, cz and sz. Lx is the size of the box in
the x-direction, Rx (1) is the x-coordinate of each atom and
Natoms is the total number of atoms.

do i=1, Natoms

x(1,0)=1.0
x(1,0)=0.0
x(1,1)=sin(2.0*PI*Rx (1) /Lx)
x(1,1)=cos(2.0*PI*Rx (1) /Lx)
enddo
do n=2, max_nx

do i=1,Natoms
cx(i,n)=cx(1i,n-1)*cx(i,1)-sx(1i,n-1)
*sx(1,1)
sx(i,n)=cx(i,n-1)*sx(i,1)+sx(i,n-1)
*ex (i, 1)

enddo

enddo

Finally the most time consuming part of the computation
is the one used for the calculation of the reciprocal terms of
¢i, E; o and E; 4g. The total number of k-vectors is divided
in blocks the number of which is determined by the user
(Nblocks). At the beginning the “atomic” counter (next)
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isinitialized to one, by calling the GA subroutine: ga_fi11.
By reading and increasing by one the value of this counter
(using the nga_read_inc) the block (1block) that each
processor will work on is determined. The block contains
the k-vectors with indices between ivecl and ivec2. The
cos(k - r) and sin(k - r) (cr and sr respectively) are cal-
culated for this block after an intermediate calculation of
cos(kyx+kyy) andsin(kyx+kyy), (denoted as cxy and sxy,
respectively). By examining if the last two quantities have
been calculated in the previous step (the variables lastnx
and lastny are used for this reason) significant amount of
computations can be avoided.

call ga_fill(next, 1, 1)
blocksize = nvec / Nblocks
lastnx = -10000

lastny = -10000

iblock = nga_read_inc(next, 1, 1)

do while (iblock<=Nblocks)

ivecl = (iblock-1) *blocksize+1
ivec2 = min(ivecl+blocksize, nvec)
do n=ivecl, ivec2

nx kv(1l,n)

ny kv (2,n)

nz kv (3,n)

if (nx/=lastnx .or. then
do 1=1, Natoms
cxy (i)=cx(i,nx) *cy (i,ny)-sx(1i,nx)
*sy (i,ny)
sxy (i)=sx(i,nx)*cy(i,ny)+cx(i,nx)
*sy (1,ny)
enddo
endif
do i=1,Natoms
cr(i)=cxy(i)*cz(i,nz)-sxy(i)*sz(i,nz)
sr(i)=sxy(i)*cz(i,nz)+cxy(i)*sz(i,nz)
enddo
lastnx=nx

lastny=ny

ny/=lastny)

|

! A CALCULATION IN THE RECIPROCAL SPACE
! CAN BE PERFORMED AT THIS POINT
|

iblock=nga_read_inc(next, 1, 1)
enddo ! do n=ivecl, ivec2
enddo ! do while (block<=Nblocks)

The previous code can be used for every calculation in
the reciprocal space and differs only in the quantity that will
be computed. As an example, the following code can be used
for the calculation of Q7 in Eq. (7) (real and imaginary parts):

do i=1, Natoms
real Qg = real Qg + charge(i) *cr (i)
imag_Qqg = imag_Qqg + charge (i) *sr (i)
enddo

Appendix 2

In this section we briefly describe the details of the TTM2.1-F
potential of Fanourgakis and Xantheas [24] which is a recent
revision of earlier work by Burnham et al. [32] and Burnham
and Xantheas [33] related to the treatment of the electrostatic
interactions.
In the case of point charges and dipoles the interaction
tensor 7;; is given by:
A 1
T;j = —. (15)
ri j
For the Ewald summation, the modified interaction tensor
given by
A erfc(kr;;
5 _ erfe(er)

ij — >
r,-j

(16)

should be introduced, where « is the Ewald parameter and

A~

r;j is the distance between atoms i and j. The ﬂ?, Tl‘;ﬂ and
YA}?’S ¥ can been easily calculated using the recursive formula
of Smith given in Ref. [34].

In the case of the TTM2.1-F model, smearing instead of
point charges have been used according to the Thole’s model
[35]. Among the different formulas proposed by Thole,
TTM2.1-F adopts the following charge distribution:

1 3a
= 34—; exp (—asu3) ,
whereu =r;j/A, A = (aioej)l/6, a;, aj are the polarizabil-
ities of atoms i and j, respectively, and a; is a dimensionless
parameter that determines the width of the distribution. In

this case the interaction tensor 7; ;j 18 given by:

oo 1— exp(—asu3) + asl/3

ij =

P a7)

ul'(2/3, asu) a8)

rl]
where I'(a, x) is the “incomplete Gamma function”. A care-
ful analysis of the previous equation shows that only the first
term (rl.;l) is important for large separations of the atoms.
This significantly simplifies the modified tensor T; ;j that
should be used in the Ewald summation:

. erfc(krij) — exp(—asu3) + asl/Sul"(Z/& asu’)

ij=

(19)
rij

In our implementation we have considered that only the
first term of Eq. (19) survives when the distance r;; is larger
than 5.0 A. It should be mentioned also that in the TTM2.1-F
potential, different smearing parameters have been used for
the charge—charge, charge—dipole (a; = 0.2), and dipole—
dipole (a; = 0.3) interactions.

As it was mentioned before the TTM2.1-F uses the model
of Partridge and Schwenke [27] for the description of the
intramolecular interactions. This model has been developed
in order to reproduce high level ab-initio energies and dipole
moments. In contrast to the other empirical potentials that
are assigning constant fractional charges to each atom, this
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model is able to reproduce the dipole moment surface of
water monomer by assigning to each atom fractional charges
that depend on the geometry of the molecule. This introduces
a small complication in the calculation of the forces as the
gradients of the charges with respect to the coordinates of the
atoms r;, are non-zero. Details and an extensive discussion
can be found in previous works [24].
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